Network downtime – The real cost for MSPs, ISPs and SPs

Network downtime – The real cost for MSPs, ISPs and SPs

Try now the
Tanaza WiFi management platform

Get Started

✔︎ No credit card required ✔︎ Easy setup

✔︎ Free up to 3 APs

or continue to read
about how network downtime impacts
on MSPs, ISPs and SPs budget.

Network downtime is one of the most expensive issues for MSPs, ISPs and SPs network architectures. It’s unavoidable, systematic and often unpredictable.
The most relevant study conducted by Gartner has demonstrated that network downtime can cost on average up to $9,000 per minute.
Organization size is also a key factor. For Fortune 1,000 companies, network downtime could cost as much as $1 million per hour, according to an IDC survey. And while the typical mid-sized company spends $1 million per year on incidents, large enterprises can spend up to $60 million or more, according to a research report from IHS.

Considering the pure math without taking in consideration generic case studies, also Cloudscale has mathematically demonstrated through a computational algorithm the relationship “network downtime = money loss”.

Network Downtime Formula

where

LR is the Lost Revenue
GR is the Gross yearly Revenue
BT is the total Business Time (in minutes)
I is the percentage of revenue impacted by the down time (an online retail business could see 100% impact whereas a sole proprietor insurance company could be 60%)
T is the downtime

Today the effects of a downtime have direct consequences on loss of company revenue.
Wherever is the cause of a network downtime, MSPs, ISPs and SPs have to consider implementing solutions to mitigate or prevent network downtime.

What are the causes of network downtime?

The IS-IS protocol (ISO/IEC 10589:2002 – included in the OSI model) classifies network downtime in six classes:

Level 0 – Network is down
Level 1 – Part of the network is down
Level 2 – Most of the network is down
Level 3 – All of the network is down except for a few isolated systems
Level 4 – Most of the network is down, but some systems are still functioning
Level 5 – All systems are functioning, but there are performance issues

These categories are used to help network administrators understand the extent of the network downtime and to identify the root cause of the problem. By understanding the level of downtime, administrators can prioritize their efforts to restore the network and minimize the impact on users.

What are the most common causes for network downtime at OSI Layers?

1) Faults, errors or discards in network devices (Layer 2)
2) Wrong device configuration changes (Layer 2)
3) Operational human errors and mismanagement of devices (Multiple Layers)
4) Link failure caused due to fiber cable cuts or network congestion (Layer 1-2)
5) Power outages (Layer 1)
6) Server hardware failure (Layer 4)
7) Denial of service (DoS) (Multiple Layers)
8) Distributed denial-of-service (DDoS) (Multiple Layers)
8) Failed software and firmware upgrade or patches (Layer 7)
9) Incompatibility between firmware and hardware device (Layer 7)
10) Other external causes (Multiple Layers)

Fing App (now a Tanaza add-on) has precise and updated real-time and historical lists of network downtime, divided by countries, duration, recurrence, severity, impact. Network administrators can read details about each single network downtime or visualize them in bulk thanks to real-time interactive maps:

The importance of an outage detector system integrated in Tanaza WiFi cloud management

An outage detector system is a network management application that allows the monitoring of network infrastructure’s faults and errors, proposing solutions and tips to fix them and checking the ISP status.

Outage detector systems are fundamental for MSPs, ISPs, and SPs that want to reduce and prevent network issues and avoid the aforementioned costs caused by outages.

The activation of the Fing App in the Tanaza cloud platform allows to identify what network endpoint is hurt by the outage.

Network administrators can visually and fastly identify what types of clients (smartphone, laptop, printer, etc) are connected to the networks thanks to an intuitive list of minimal icons.
Depending on the chosen plan for the add-on, each client will show relevant network information including the status and the classification of connection, type and brand of WiFi client, bandwidth values (download and upload mbps) and OS information (name, version, build).

Fing and Tanaza have combined their core technologies to create the advanced outage WiFi notification system. Thanks to Tanaza + Fing add-on, network administrators can understand if the APs are offline for internet outages around the world, improving their efficiency to inform their customers about recovery times and responsibilities. The add-on is compatible with the main ISPs of each country and allows network managers to compare them by rating and reviews in order to identify in real-time the best solution for internet connection.

Fing App is able to register real-time ISP connection status data, including information about the severity of outage (on a scale of 5 values: minor, moderate, considerable, major, critical), outage duration and recurrence, and geographical impacted areas.


For this reason, Tanaza and Fing add-on is based on an AI-algorithm that operates in a fully automatic way, with no need for manual reporting.

Try the Tanaza + Fing add-on

Test the accurate identification of client devices connected to your multi-vendor networks.

Explore the Tanaza + Fing Add-on

✔︎ No credit card required ✔︎ Easy and fast integration
✔︎ Free up to 3 APs

Tanaza® introduces clients identification powered by Fing™

Technical Guide to 6GHz for MSPs, ISPs and SPs

Technical Guide to 6GHz for MSPs, ISPs and SPs

Try now the
Tanaza WiFi management platform

Get Started

✔︎ No credit card required ✔︎ Easy setup

✔︎ Free up to 3 APs

or continue to read
the technical guide to 6GHz
for MSPs, ISPs and SPs.

After only two years after the approval by the FCC regulations and Wi-Fi Alliance (and the progressive approval by the national regulatory authorities in Japan, UE, Latin America) to open up the 6GHz band for unlicensed Wi-Fi broadcasting, the main networking OEMs have already launched the first WiFi6E access points.

The number of 6GHz supported access points is expected to reach 2.3 billion of which 350 million are Wi-Fi 6E capable. More than 400 products are now Wi-Fi 6E certified, Wi-Fi Alliance says.
Wi-Fi 6 APs constituted more than 76% of the shipments in the period according to IDC.
In previous articles, we have discussed this frequency range, the future of WiFi6E – WiFi 7 and the differences between 2.4GHz and 5GHz.
In this article, we have written a technical guide about the 6GHz frequency for MSPs, ISPs, SPs and about the differences between 6GHz, 5GHz and 2.4GHz.
Recently, Lee Badman – one of the most important authorities in the networking sector – has expressed his frustration about the lack of technical documentation for wireless products and technologies. As tech lovers, before being networking professionals, we can only agree.

This technical guide is quite long, but its length is fundamental to explain all the facets of the revolutionary 6Ghz.

The 6GHz band frequency

The 6GHz frequency, introduced with the new Wi-Fi 6E standard (802.11 ax), works in the worldwide range between 5.925 and 7.125 GHz (1200MHz grant of the spectrum) and has a theoretical top speed of 9.6 Gbps (the same as the 5GHz).
While the 6 GHz band is continuous and channelized across the entire 1200 MHz, network users are active in all sub-bands. The 6 GHz band frequency uses 59 channels of 20 MHz bandwidth. The channel numbers overlap with the current 2.4 GHz and 5 GHz band.

Following the same distribution model of the other bands, each country has enabled the spectrum in different sub-bands.

The FCC has designated four sub-bands for the US territory: U-NII-5, 6, 7, and 8.
The EU Commission, instead, allows network operators to exploit the “U-NII-5 equivalent” part of the band, the lower one: 480 MHz after the 20 MHz guard band.

Countries enabling Wi-Fi in 6GHz
Countries Status Spectrum
Argentina Considering 5925-6425 MHz
Australia Adopted - Considering 5925-6425 MHz - 6425-7125 MHz
Bahrain Adopted 5925-6425 MHz
Brazil Adopted 5925-7125 MHz
CEPT Considering 5925-6425 MHz (*only considering 5945-6425)
Canada Adopted 5925-7125 MHz
Chile Adopted 5925-6425 MHz
Colombia Adopted 5925-7125 MHz
Costa Rica Adopted 5925-7125 MHz
Dominican Republic Adopted 5925-7125 MHz
Egypt Considering 5925-6425 MHz
European Union Adopted 5925-6425 MHz (*only adopting 5945-6425)
Guatemala Adopted 5925-7125 MHz
Honduras Adopted 5925-7125 MHz
Hong Kong Adopted - Considering 5925-6425 MHz - 5925-7125 MHz
Iceland Adopted 5925-6425 MHz (*only adopting 5945-6425)
Japan Considering 5925-6425 MHz - 5925-7125 MHz
Jordan Adopted 5925-6425 MHz
Kenya Adopted 5925-6425 MHz
Liechtenstein Adopted 5925-6425 MHz (*only adopting 5945-6425)
Malasya Adopted 5925-6425 MHz
Mauritius Adopted 5925-6425 MHz
Mexico Adopted 5925-6425 MHz
Morocco Adopted 5925-6425 MHz
New Zeland Adopted 5925-6425 MHz
Norway Adopted 5925-6425 MHz
Oman Considering 5925-6425 MHz
Peru Adopted 5925-7125 MHz
Qatar Considering 5925-6425 MHz - 5925-7125 MHz
Saudi Arabia Adopted 5925-7125 MHz
Russian Federation Adopted 5925-6425 MHz
South Africa Adopted 5925-6425 MHz
South Korea Adopted 5925-7125 MHz
Switzerland Adopted 5925-6425 MHz
Tunisia Considering 5925-6425 MHz
Turkey Adopted 5925-6425 MHz
United Arab Emirates Adopted 5925-6425 MHz
United Kingdom Considering 5925-6425 MHz - 6425-7125 MHz
United States Adopted 6425-7125 MHz

These data are updated at 04/19/2023

The tripled spectrum allows a fast rollout of new APs and network devices and enables more non-overlapping Wi-Fi channels.

This band frequency includes the orthogonal frequency-division multiple access (OFDMA) feature from cellular technologies, which takes advantage of servicing multiple users on sub-channels transmitted simultaneously. 6GHz supports the native orthogonal frequency division.
OFDMA allows the transmission of significant quantities of data over a single noisy channel. This technique works by splitting a single signal into multiple smaller transmitted signals. OFDMA is perfect for medium-far transmissions, while MU MIMO is more indicated for short-range.

6 GHz spectrum access approaches

Dynamic random spectrum access and contentionbased protocols require access to multiple channels to maintain acceptable performance.

6 GHz spectrum access approaches for Europe

6 GHz spectrum access approaches for Europe

6 GHz spectrum access approaches for other countries

6 GHz spectrum access approaches for worldwide countires (except Europe)

What are the benefits of the 6GHz band?

> 1 Gbps Speeds – More Spectrum
< Low levels of latency – Fully-Scheduled Traffic
> High Capacity on Cutting edge-devices
> More precise positioning
> More than 700 access points of the market supports 6GHz

Features introduced by the 6GHz band

6GHz introduces new ‘in-band’ features for:
airtime efficiency;
faster passive/active AP discovery.

Airtime efficiency

Beacon Changes

This feature removes information elements for older generations: add some parameters to Wi-Fi 6 operations and configuration information elements.

Multi-BSSID Beacon

This feature avoids sending repetitive information elements in separate beacons or probe responses. It allows for improved airtime efficiency.

New Rules for Probing

The 6GHz frequency band doesn’t allow probes in nor-PSC channels unless a beacon is received.
It allows probes in PSC channels.

Faster passive/active AP discovery

6GHz Passive AP discovery

Fast Initial Link Setup (FILS) AP discovery

This passive feature announces each device every 20 msec (TUs – 20-time units). FILS frame includes multiple fields and subfields populated with primary channel operating class identification, SSID, BSSID, and critical channel information. All this information is necessary for a client device to decide whether the AP is suitable for connection.

Unsolicited probe response frames AP discovery

This passive feature announces each device every 20 msec (TUs – 20-time units). It can contain the same information elements as a ‘normal’ probe response, but they are transmitted to the broadcast address. Thanks to this no-frame exchange transmission by the AP, the contention loss to get this information to a client device is low. All this information is necessary for a client device to decide whether the AP is suitable for connection.

6GHz Active AP discovery

Preferred Scanning Channels (PSC)

Preferred Scanning Channels (PSCs) are a group of 1 in 4 20 MHz channels designated for beacons and discovery that have priority within the 6 GHz Wi-Fi band.
Instead of scanning the entire 6 GHz spectrum for an optimal channel, devices that support 6GHz can scan PSCs for efficient connectivity. Clients can only send probes requests on every fourth 20 MHz channel.
The complete list of all the 6 GHz PSC channels is 5, 21, 37, 53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 213, 229.

What is the difference between 2.4 GHz, 5 GHz, and 6 GHz?

The main difference between 2.4GHz, 5GHz, and 6GHz wireless frequencies are the range (coverage) and bandwidth (speed) that the bands provide.
5GHz and 6GHz are faster than 2.4 GHz, but they have more difficulties penetrating solid surfaces, such as walls and floors. In 2022, the number of devices on the market that operate on 2.4GHz is much higher than the 5GHz and 6GHz ones. These bands tend to have less overcrowding interference from other devices and can guarantee a better data transmission level.
Band 20MHz Channels 40MHz Channels 80MHz Channels 160MHz Channels
2.4GHz 11 2 N/A N/A
5GHz 37 18 9 4
6GHz 59 29 14 7

Theoretical number of available channels on each band

Channel Width Valid Channel Numbers Number of PSC Channels PSC Channel Numbers
20 MHz 1, 5, 9, 12, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217. 221, 225, 229, 233 15 5, 21, 37, 53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 213, 229
40MHz 1-5, 9-13 17-21, 25-29, 33-37, 41-45, 49-53, 57-61, 65-69, 73-77, 81-85, 99-93, 97-101, 105-109, 113-117, 121-125, 129-133, 137-141, 145-149, 153-157, 161-165, 169-173, 177-181, 185-189, 193-197,201 205, 209 213, 217-221, 225-229 15 5, 21, 37, 53, 69, 85, 101, 117, 133, 145, 165, 181, 197, 213, 229
80GHz 1, 13, 17, 29, 33, 45, 49, 61, 65, 77, 81, 93, 97, 109, 113, 125, 129, 141, 145, 157, 161, 173, 177, 189, 193, 205, 209, 221 14 5, 21, 37, 53, 69, 85, 101, 117, 133, 145, 165, 181, 197, 213
160GHz 1-29, 33-61, 65-93, 97-125, 129-157, 161-189, 193-221 7 5/21, 37/53, 69/85, 101/117, 133/149, 165/181, 197/213

Valid channels number and PSC Channels in 6GHz radio

Is it better to connect to 2.4 GHz, 5GHz or 6GHz?

The best frequency among these depends on inherent hardware features and the real-time radio-frequency environment.

Tanaza cloud management dashboard has specific features with which network engineers can easily manage hundreds or thousands of AP frequencies. They can switch from 2.4GHz to 5 GHz (and soon also to 6GHz thanks to the release of new Tanaza Powered Devices and Tanaza Compatible Devices)

For each AP, MSPs, ISPs, and SPs can select the radio mode, the channel and channel width, and the TX power.

To obtain the maximum signal spread and reduce the propagation loss, the technical conformation of each frequency suggests using the 2.4GHz band for 2.4 GHz radio-supported devices and IoT devices. Older 5Ghz may fall into a ‘legacy’ category and be moved to this band to avoid dragging down the performance of preferred clients in the 5 GHz band.

5 GHz becomes the band for mainstream high-performance devices that are not 6 GHz capable, allowing non-preferred devices to be relegated to 2.4 GHz as above.

The 6 GHz band can be used for the latest, highest-performance devices, almost by definition in the first few years of rollout. It benefits not only from the highest rates available but also from the lack of legacy equipment and lower noise levels in the band.

Read more tips to execute an accurate WiFi channel selection

Try Tanaza

Experience the power of managing WiFi access points from the cloud with Tanaza. Soon also in 6GHz radio frequency.

Get Started

✔︎ No credit card required ✔︎ Free up to 3 APs

Tanaza OS

Tanaza is Wi-Fi Now Partner

Tanaza is Wi-Fi Now Partner

Try now the
Tanaza WiFi management platform

Get Started

✔︎ No credit card required ✔︎ Easy setup

✔︎ Free up to 3 APs

or continue to read
about Tanaza achievement.

On the occasion of the new interoperability among Tanaza and Fing solutions, Claus Hetting, CEO & Chairman @ Wi-Fi NOW has evaluated and announced that Tanaza is a brand new Wi-Fi NOW partner.
Our Wi-Fi cloud management solution is listed among the worldwide leaders in the industry.

Who are the other Wi-Fi NOW partners?

Being part of this list is a great honor and allows Tanaza to create new significant partnerships with Tier 1 networking companies.
Only the most relevant and great Wi-Fi solutions and services can join this list. The most relevant brand includes historical Tanaza partners, including Linksys and Edgecore.

Wi-Fi Now Partners

How Claus Hetting of Wi-Fi Now describes Tanaza?

Tanaza delivers an enterprise, cloud-managed Wi-Fi platform that is powerful, intuitive, and flexible. Service providers choose this platform for stability, features, and hardware flexibility. Networking vendors partner with Tanaza to deliver compelling ‘plug & play’ cloud management solutions. Software partners leverage the company’s APIs to integrate their applications across all supported models. The Tanaza eco-system creates synergies that make the management of networks simple, cost-effective, and scalable.

Read the article by Claus Hetting about how Tanaza’s hardware-agnostic Cloud-based Wi-Fi management adds Fing™ for device recognition.

Try Tanaza

Experience the power of managing WiFi access points from the cloud with Tanaza.

Get Started

✔︎ No credit card required ✔︎ Free up to 3 APs

Tanaza OS

Restaurante WiFi – Cómo elegir puntos de acceso en el sector de la restauración

Pruebe ahora la plataforma de gestión Tanaza
Plataforma de gestión de WiFi

Inicie una prueba gratis de 15 días

✔︎ No se necesita tarjeta de crédito ✔︎ Fácil configuración

✔︎ Auto rollback cuando desees

o siga leyendo
sobre cómo recibir notificaciones
cuando los puntos de acceso se desconectan.

Elegir los mejores puntos de acceso WiFi para restaurantes es mucho más importante de lo que pensamos. Los puntos de acceso son la columna vertebral de cualquier red inalámbrica. Por lo tanto, es importante elegir el hardware adecuado, ya que garantiza la construcción de un sistema sólido y escalable que pueda manejar la cantidad adecuada de conexiones por dispositivo y mantener la fiabilidad de la red en función de sus necesidades de conectividad.

Al desplegar una nueva red WiFi, es importante buscar el punto de acceso adecuado para mejorar la conectividad de los huéspedes. El tipo de puntos de acceso que pueda necesitar dependerá del entorno en el que se vaya a desplegar. Además, es primordial proporcionar una conectividad sin fisuras que permita a los usuarios desplazarse libremente por todo el espacio.

Cómo elegir el punto de acceso WiFi adecuado para los restaurantes

Medir el tamaño del restaurante y comprobar los obstáculos físicos para la señal WiFi

El primer paso para elegir el punto de acceso adecuado para su restaurante es medir el tamaño del mismo. Compruebe cuál es el espacio que necesita cubrir con un punto de acceso. Si acaba de abrir un nuevo restaurante con menos afluencia, por ejemplo de 10 a 30 personas, necesitará muchos menos puntos de acceso que los que podría necesitar para una afluencia de 30 a 80 personas. Si piensa en expandirse en breve, puede considerar la posibilidad de elegir un punto de acceso con una amplia gama para prepararse para su crecimiento.

Además, hay que tener en cuenta muchos factores, como la forma de la planta, el tipo de edificio o los materiales de las paredes que dividen el espacio. El número de puntos de acceso necesarios en un lugar aumenta si las paredes internas separan la zona.

Eliminar cualquier obstáculo físico innecesario mejorará la conectividad del punto de acceso. Un estudio exhaustivo de su restaurante también ayudará a determinar cuántos puntos de acceso necesitará.

Número de usuarios simultáneos: comprueba cuántos usuarios están conectados al WiFi

Dependiendo del tamaño del local, el número de usuarios simultáneos conectados a la red también variará. Por ejemplo, una red de un restaurante grande puede albergar aproximadamente un máximo de 30 usuarios concurrentes de WiFi, mientras que un restaurante de tamaño medio puede albergar un máximo de 12 usuarios concurrentes. Por lo tanto, es importante tener en cuenta la cobertura de clientes cuidadosamente al diseñar la red WiFi.

Además, diferentes factores pueden afectar al número de usuarios concurrentes que puede soportar un punto de acceso inalámbrico. Aunque muchos puntos de acceso soportan hasta aproximadamente 250 dispositivos conectados, es importante tener en cuenta que los dispositivos de radio única pueden manejar un número menor de usuarios concurrentes que los puntos de acceso de radio dual.

Si desea calcular el número de usuarios simultáneos y el número de puntos de acceso para sus redes WiFi, lea nuestro artículo Planificación de la capacidad de la red – Capacidad inalámbrica frente a cobertura.

Si desea calcular el número de usuarios simultáneos y el número de puntos de acceso para sus redes WiFi, lea nuestro artículo Planificación de la capacidad de la red – Capacidad inalámbrica frente a cobertura.

Predecir el uso de Internet para establecer qué puntos de acceso WiFi funcionan mejor para su restaurante

Es esencial entender el uso de Internet de su restaurante y saber qué tipo de actividad en línea harán sus usuarios de WiFi mientras estén conectados a su red WiFi. Conocer el uso de Internet es necesario para elegir el punto de acceso adecuado para su restaurante.

Algunas aplicaciones consumen más ancho de banda que otras. La tasa de transferencia de datos se calcula en bits por segundo. Este bit/segundo es bastante menor cuando los clientes simplemente navegan por la web, envían mensajes y chatean en Facebook, Whatsapp o Telegram, o simplemente revisan sus correos electrónicos. Sin embargo, cuando la gente comparte o descarga las imágenes y los archivos en DropBox y Google Drive, el número de bits/segundo transmitido a través de su red aumentará.

Además, si los usuarios invitados transmiten vídeos en YouTube o Netflix, o realizan llamadas y videollamadas VoIP, el número de bits/segundo aumenta considerablemente. Por lo tanto, es importante predecir el uso de Internet de antemano para ofrecer a tus invitados una experiencia WiFi óptima. El punto de acceso maneja diferentes números de usuarios concurrentes dependiendo del uso de Internet de los clientes.

Calcule su uso de Internet con nuestro selector de punto de acceso.

Elija los mejores puntos de acceso WiFi para restaurantes, teniendo en cuenta las variables tecnológicas

Teniendo en cuenta las variables tecnológicas, se elegirían los mejores puntos de acceso WiFi para los usuarios invitados. Aparte del rendimiento del punto de acceso, si la señal de la red WiFi no llega a los usuarios, el número de clientes simultáneos conectados a la red en un lugar será limitado.

Por lo tanto, lleve a cabo un estudio adecuado del emplazamiento de su restaurante para elegir el punto de acceso adecuado. Son muchas las expectativas que se tienen de un punto de acceso concreto, desde el rendimiento de la velocidad, la facilidad de instalación, la capacidad de gestión en la nube y la estabilidad del software. Los puntos de acceso con funciones de gestión en la nube son imprescindibles para cualquier proveedor de restaurantes. Permiten a los administradores de red controlar los dispositivos y personalizar el ancho de banda al tiempo que supervisan el rendimiento general de la red y los problemas de seguridad.

Descubra los dispositivos Tanaza Powered Devices con gestión de red lista para usar para las redes WiFi de su restaurante.

POE vs LAN

La alimentación a través de Ethernet (PoE) es una técnica que pasa la corriente eléctrica a través de redes de área local ethernet por cable. Permite que los cables de alimentación lleven la corriente eléctrica de cada dispositivo en lugar de los cables de datos. El uso de POE limita el número de cables necesarios para una red Wifi. El principal beneficio del POE es que no es necesario tender cableado eléctrico, lo que ahorra dinero en material y ahorra tiempo de instalación. El uso de POE ha hecho que las instalaciones de puntos de acceso sean relativamente más fáciles y escalables.

Por otro lado, LAN es una red informática que interconecta ordenadores dentro de un área limitada. A diferencia de la alimentación a través de Ethernet, en el cable LAN se requiere una fuente de alimentación externa (adaptador) para obtener la energía.

802.11ac vs 802.11n

El 802.11ac y el 802.11n son los estándares de redes inalámbricas que difieren significativamente entre sí. El IEEE 802.11ac se finalizó en 2013 y admite una frecuencia inalámbrica de sólo 5 Hz. Es la quinta generación de WiFi y se encuentra en todos los principales smartphones, portátiles, ordenadores y televisores inteligentes. La versión mejorada de 802.11ac ofrece una mayor velocidad, un mejor alcance y un mayor rendimiento del WiFi.

En cambio, el estándar de red inalámbrica 802.11n se finalizó en 2009. Utiliza varias antenas para aumentar la velocidad de datos y es compatible con las frecuencias inalámbricas de 2,4 y 5 GHz. En términos de velocidad, 802.11ac es capaz de alcanzar 720Mbps (Megabits/seg.), mientras que 802.11n fija su velocidad en 240Mbps.

Aquí se sabe claramente quién es el ganador. Como 802.11n utiliza frecuencias inalámbricas de 2,4 y 5 GHz, supera a la 5ª generación de WiFi, que sólo utiliza 5 GHz. Las bandas de frecuencia más altas son comparativamente más rápidas, pero las bandas más bajas llegan más lejos.

Determinar la ubicación del punto de acceso WiFi para mejorar la cobertura

Tener sólo un punto de acceso adecuado no determinará una conectividad perfecta. Si ha colocado un punto de acceso WiFi para un restaurante, debe encontrar una ubicación adecuada para mejorar su cobertura. Se recomienda instalar el punto de acceso inalámbrico en los techos de sus restaurantes, ya que esto proporcionará una conectividad total a todo el local.

Además, la parte superior del punto de acceso debe estar orientada hacia la zona de servicio prevista para mejorar la cobertura. Este es el lugar donde se sitúan las antenas de un punto de acceso.

El punto de acceso nunca debe estar obstruido por nada, como techos abatibles, televisores o cámaras. De hecho, estos puntos de acceso se ven afectados por otros dispositivos que transmiten radiofrecuencia. Por lo tanto, las interferencias provocan una conectividad débil e inestable. Por lo tanto, asegúrese de que su punto de acceso está colocado lejos de las fuentes de radio más comunes, como televisores, microondas/hornos, altavoces, cámaras de seguridad inalámbricas, y muchos más.

Seleccione los tipos de antena de punto de acceso WiFi adecuados: direccional frente a omnidireccional

Depende totalmente de su conectividad de red para elegir entre los dos tipos de antenas de punto de acceso WiFi. Una es direccional y la otra es omnidireccional. La antena omnidireccional es la que envía señales a todas las direcciones, mientras que la direccional, como su nombre indica, envía una señal a una sola dirección.

Después de analizar la conectividad de tu red, puedes decidir elegir la antena de punto de acceso WiFi adecuada. Las antenas direccionales se consideran una mejor opción ya que envían una señal en una dirección específica. Puede mejorar la conectividad de su red apuntando la antena en la dirección en la que falta la señal.

Pruebe un enfoque multiproveedor si quiere reducir costes

Cuando busque los puntos de acceso WiFi adecuados para su restaurante, deberá tener en cuenta todos los factores que garanticen la perfecta conectividad de su red con los usuarios invitados. Tenga en cuenta que necesita instalar dispositivos no sólo en el interior sino también en el exterior para su despliegue. 

Para un rendimiento óptimo de su punto de acceso, consulte la plataforma Tanaza. Se trata de un software de gestión de red multiproveedor para operar y controlar los puntos de acceso en la nube. 

Tanaza funciona con las marcas más comerciales de puntos de acceso como Ubiquiti, MikroTik, OpenMesh, LigoWave, PowerCloud, y también viene ya preinstalado en una línea seleccionada de puntos de acceso de Comfast, Amer Networks, Intelbras (sólo para Brasil), DCN, y Yuncore.

Con Tanaza, podrás gestionar múltiples dispositivos WiFi de diferentes proveedores de forma centralizada. Solucionar problemas de redes WiFi a través de la nube, habilitar portales cautivos con diferentes métodos de autenticación y personalizar la experiencia WiFi de los invitados desde una única plataforma.

Si está buscando el punto de acceso adecuado para los restaurantes, también necesita un software de gestión de red para operar y controlar los dispositivos y las redes. Tanaza permite escalar los despliegues de red, mezclar y combinar marcas, todo ello desde la nube.

Tanaza ofrece varias opciones de personalización para los administradores de red en las que también pueden limitar el ancho de banda y el uso de datos. Descubra todas las características de la plataforma Tanaza iniciando una prueba gratuita hoy mismo.

Try Tanaza

Experimente la potencia de la gestión de los puntos de acceso WiFi desde la nube con Tanaza.

Inicie una prueba gratis de 15 días

✔︎ No se requiere tarjeta de crédito

Tanaza OS

Zero Touch Provisioning – A scientific method to reduce unnecessary network activities and Scope3 emissions

Zero Touch Provisioning - Tanaza

Zero Touch Provisioning – A scientific method to reduce unnecessary network activities and Scope3 emissions

Try now the Tanaza
WiFi Management Platform

Get Started

✔︎ No credit card needed ✔︎​ Easy configuration

✔︎ Free up to 3 APs

or continue to read more
about Zero Touch Provisioning.

The Zero-touch provisioning is the process that can reduce time-consuming networking activities such as operating systems updating, patches or bug fixes, and features implementation, setting up WiFi access points automatically, and following agile principles.
Zero-touch provisioning could have economic and enviromental impacts when MSPs, ISPs, and SPs have to deploy a consistent number of WiFi devices.
Typically, the AP installation procedure is one of the highest cost factors in the business plan of every company.
Adding hundreds or thousands of WiFi access points through repetitious manual commands requires a lot of effort and time that becomes a lot of money in large-scale environments.
Not to mention wrong configurations, errors, and other network problems that can exceed the forecasted budget.

Zero-touch provisioning can reduce time-consuming activities scientifically

Zero-touch provisioning method is based on a solid scientific approach. In 2021, Ivan Grgurević (Associate Professor at Faculty of Transport and Traffic Sciences at University of Zagabria) and Ivan Simunić (Solutions Architect at Ericsson and Associate Professor at Faculty of Transport and Traffic Sciences at University of Zagabria) have conducted a definitive study about the automation of network device configuration using Zero-Touch Provisioning.

The conference paper has shown proven significant savings in the installation time: until
over 95% (depending on the AP)

Installation time and provisioning costs represent an important cost in the CAPEX/OPEX model.
This is why this scientific study has mathematically shown as the reduction of AP installation time is directly related to the reduction of deployment costs.

Tanaza has pioneered the zero-touch provisioning methodology as a cost reduction catalyst for network deployment, when in 2020, we published an article about the real cost of wireless networks and how to calculate the TCO of WiFi networks.

Zero-touch provisioning can reduce Scope 3 – Categories 6-7 emissions

When a ZTP is implemented in the network deployment process, MSPs, ISPs, and SPs can avoid sending technical employees onsite to perform the installation of the network access points.
Network administrators can remotely configure WiFi access points and send them pre-configured to the customer’s premises for installation.

This contributes to a significant reduction in indirect greenhouse emissions.

Today, the most valuable study conducted about the emissions for MSPs, ISPs and SPs shows that:

“Average CO2/km emissions vary by vehicle type and age, so the 120gr/km considered here is an optimistic scenario.​ If you multiply these numbers with several hundreds of field interventions typically run per day you can quickly see that there are tons of CO2 emitted per month.”
– Cisco Study

 

In environmental science, business travel carbon footprinting (travel by air, rail, bus, automobile or other modes of travel, employee commuting, and hotel stays) is part of the Scope 3 – Categories 6-7 emissions (indirect greenhouse emissions – CO2, CH4, N2O, HFC, or CO2e emitted per kilometer or per passenger-kilometer traveled.)

Different studies conducted by GHG Protocol and Carbon Trust has shown that these categories represent some of the largest sources of emissions for companies (in some cases as high as 85% to 95%).
Zero Touch Provisioning can reduce Scope3 emissions
Net zero (that cover Scope1, 2 and 3) can’t happen without a total revolution of supply chains.
Zero touch provisioning in network configurations can be part of that change.
Through the reduction of business travels and the programmatic obsolescence of devices to change periodically, ZTP can indirectly help MSPs, ISPs and SPs to obtain international certifications as PAS 2060 in order to demonstrate the organization’s commitment to decarbonisation, and the neutralization of remaining impact through the support of environmental projects.

 

How does zero-touch provisioning work?

The Tanaza zero-touch provisioning feature is based on a highly complex algorithm. We try to resume in a few lines the ZTP architecture, trusting to express what are the branches and bounds that concur to cut costs for companies.
When a WiFi device has activated the zero-touch provisioning capability, the algorithm starts:
– to search for a DHCP server on the network to obtain the IP address,
– to obtain gateway information,
– to verify the location of the DNS server.

At this point, if the location of the DNS server is not provided or unreachable, DHCP uses other DNS services.

When the device has obtained an IP address, it faces other configuration obstacles such as:
– firewalls.

The device processes the DHCP options and locates configuration files, executes scripts, and upgrades and/or downgrades software.

If both the image and configuration files are present, the image is installed and the configuration is applied.

If only the image file is present, the image is installed on the device.

If the image is the same as the image already installed on the device, ZTP continues and skips the installation step.

If the image was unable to be fetched by the device, ZTP will try to fetch the image again.

If the image has corrupted, the installation fails.

If installation fails for any reason, ZTP will restart.

If there is no image or configuration file, the ZTP process starts again.

If there is no file server information, the ZTP process starts again.
Once the configuration is committed, the ZTP process has been deemed successful and terminates.

The precedent list is only a brief sequence of the operation that occurs during the ZTP provisioning process.
In the best cases, we have counted 19 operations that network administrators can solve with further sub-tasks and manual commands.
In these steps, random events and triggers that can cause the restart of the process can suddenly happen, increasing the number of time-consuming operations.

For instance, these events are:
– Request for the configuration file, script file, or image file fails.
– The configuration file is incorrect, and the commit fails.
– No configuration files and no image files are available.
– The image file has been corrupted, and installation fails.
– No file server information is available.
– The DHCP server does not have valid ZTP parameters configured.
– When none of the DHCP client interfaces goes to a bound state.
– ZTP transaction fails after six attempts to fetch the configuration file or image file.

Tanaza’s zero-touch provisioning algorithm solves all these passages in a single automatic operation, allowing the access points configuration in a few seconds.
Tanaza’s zero-touch provisioning algorithm solves all these passages in a single automatic operation, allowing the access points configuration in a few seconds.

Advantages of Zero-touch provisioning

The main advantages of zero-touch provisioning includes:
– automated setup of network devices;
– reduced time in manual configuration;
– reduced costs from less time being spent on manual tasks;
– easier and quicker updates;
– reduction of possible errors generated by human configurations;
– less time to get network devices operational.
– growing efficiency in large-scale device deployments.

Why Tanaza?

  • Tanaza software upgrades existing Wi-Fi networks.
  • Tanaza works with the most common easy-to-procure Wi-Fi access points available in most countries, such as Ubiquiti, MikroTik, TP-Link. If a device model is not supported yet, Tanaza may support it on request for medium to large network deployments. Discover all devices compatible.
  • IT teams do not need to deploy any hardware controller. Tanaza is 100% cloud-based and ready to use with no need for AWS instance deployments.
  • Our platform provides unlimited scalability.
  • It’s powerful and it has an intuitive user interface.

The Tanaza team can help you to select the best hardware that runs the Tanaza Operating System out-of-the-box from our OEM partners for a plug-and-play experience. Discover the Tanaza Powered Devices.

Explore the zero touch provisioning by Tanaza

The Tanaza team can help you to select the best hardware that runs the Tanaza Operating System out-of-the-box from our OEM partners for a plug-and-play experience. 
Get Started

✔︎ Out-Of-The-Box Experience
✔︎ Intelbras, Comfast, Amer Networks, DCN and Yuncore with Tanaza pre-installed

Cómo utilizar el modelo OSI para solucionar los problemas de las redes en el capa 2 OSI

Cómo utilizar el modelo OSI para solucionar los problemas de las redes en el capa 2 OSI

TransferTransfer
Nuestro artículo anterior trata de cómo utilizar el modelo OSI para solucionar problemas de red en la layer 1. Cubrimos cómo esbozar los problemas con sus redes WiFi y cómo solucionarlos utilizando el modelo OSI.
 
Sólo para refrescar su memoria, el modelo OSI ayuda a desglosar un problema y aislar la raíz del mismo. Lo ideal es adoptar un enfoque ascendente por capas, ya que la mayoría de los problemas de WiFi se producen en las dos primeras capas del modelo OSI. Si el problema no está en los layer 1 o 2, no es un problema de WiFi. Y punto.
 
En este artículo, continuamos nuestro camino hacia arriba en el modelo OSI con el layer de enlace de datos.

Modelo para la resolución de problemas en redes de capa 2 OSI

El enlace de datos es la segundo layer del modelo OSI. Se refiere al modo en que los sistemas que utilizan un enlace físico cooperan entre sí.

Ayuda a transferir datos entre dos dispositivos de la misma red. Los datos se dividen en paquetes. El trabajo de el layer de enlace de datos es definir secuencias únicas para indicar el comienzo y el final de cada paquete. Además, es la responsable directa del control de flujo y de errores en las comunicaciones dentro de la red.

El layer de enlace de datos tiene dos subcapas: la de Control de Enlace Lógico (LLC), que interpreta la electricidad, la luz y el WiFi en 1s y 0s que se convierten en los paquetes de datos. La otra subcapa es la capa de Control de Acceso al Medio (MAC), responsable de trasladar los paquetes de datos de una tarjeta de interfaz de red (NIC) a otra a través de un canal compartido. Gracias a los protocolos MAC utilizados en la subcapa, las señales enviadas desde diferentes estaciones a través del mismo canal no colisionan.

Las radios WiFi se comunican mediante intercambios de tramas 802.11 en la subcapa MAC de el layer de enlace de datos. Por lo tanto, el siguiente layer en la que hay que fijarse a la hora de solucionar problemas en las redes es el capa 2 OSI.

Retransmisiones

El problema más común en el capa 2 OSI son las retransmisiones que se producen en la sublayer MAC. Todo comienza cuando un dispositivo transmisor envía una trama unicast a un dispositivo. El dispositivo receptor utiliza una comprobación de redundancia cíclica, también conocida como “CRC”, para confirmar la integridad de la recepción del paquete de datos. Si el CRC se supera, significa que el paquete de datos no se ha corrompido durante la transmisión.
 
El dispositivo receptor enviará una trama de acuse de recibo 802.11 ‘ACK’ al dispositivo transmisor, como forma de verificar la entrega del paquete de datos. Si se produce una colisión durante la transmisión de la información o se corrompe parte de la trama unicast, el CRC fallará. Así, el dispositivo receptor no enviará una trama ACK al dispositivo transmisor.
 
A su vez, el dispositivo transmisor volverá a transmitir las tramas, provocando una retransmisión. Las retransmisiones tienen un gran impacto en las redes WiFi, ya que crea una sobrecarga adicional en la capa MAC. Además, consume tiempo de emisión adicional en el medio semidúplex.
 
Las retransmisiones de el capa 2 OSI tienen un efecto negativo. Por ejemplo, si el rendimiento disminuye y la latencia aumenta, lo más probable es que afecte a la voz y al vídeo. Así, un aumento de la latencia provocará problemas de eco, y las altas variaciones de jitter darán lugar a un audio inconexo. Como regla general, para las llamadas WiFi, la tasa máxima de retransmisiones que puede soportar tu red WiFi sin afectar al servicio debería ser inferior al 2%.
 
Los motivos de las retransmisiones de capa 2 OSI pueden ser varios. Por ejemplo, una interferencia de radiofrecuencia unida a una baja relación señal/ruido (SNR) debida a un mal diseño del WiFi. Ambas cosas ocurren en el layer 1. Además, existe la posibilidad de una interferencia de celda adyacente y un nodo oculto que también pueden causar porcentajes más altos de reintentos de layer 2.

Desglosemos las razones:

SNR (Relación señal/ruido)

Es la diferencia entre la potencia de la señal recibida y la potencia del ruido expresada en decibelios. Las retransmisiones en el layer 2 aumentan cuando el ruido de fondo se acerca a la potencia de la señal recibida o si la señal es demasiado baja. Estadísticas para las redes WLAN: Una buena calidad de señal debe estar entre 20 y 25 dB. Todo lo que esté por debajo de estos rangos se considera una calidad de señal baja.

Interferencias de RF

Desempeña un papel importante en las retransmisiones en el layer 2. Las retransmisiones excesivas se producen cuando las tramas se corrompen a causa de las interferencias de RF y, por tanto, el rendimiento se reduce considerablemente. Si estas retransmisiones se producen con frecuencia, es esencial entender la fuente para eliminar el dispositivo de interferencia.

Interferencias del canal

Volvamos a lo básico. Al diseñar el plan de asignación de canales WLAN de 2,4 GHz, hay que asegurarse de utilizar adecuadamente los canales disponibles para 2,4 GHz. Cuando hay una célula de cobertura superpuesta, y un espacio de frecuencia superpuesto, las posibilidades de tener datos corruptos y reintentos de capa 2 OSI son notablemente altas. Recuerda configurar un patrón de reutilización para los canales de 2,4 GHz 1, 6 y 11 (EE.UU.) o 1, 5 y 9 -a veces también se utiliza el 13 en los despliegues para Europa-. De este modo, evitarás las interferencias de células adyacentes en tus WLAN.

Nodo oculto

En las redes inalámbricas, un “nodo oculto” significa que un nodo específico “habla” con un punto de acceso WiFi pero no puede “hablar” directamente con otros nodos que ya tienen una “conversación” con ese punto de acceso. Esto debería llamar la atención, porque provoca problemas en la subcapa MAC, ya que varios nodos envían paquetes de datos al punto de acceso al mismo tiempo, creando así interferencias en el nivel del punto de acceso, lo que provoca la pérdida de paquetes de datos.

Nota al margen

Cuando hay una pérdida frecuente de paquetes, y por lo tanto se producen retransmisiones a menudo es crucial mantener un ojo en el porcentaje de pérdida de paquetes y retransmisiones. Tanaza cuenta con una herramienta de ping integrada en la plataforma de gestión de la nube que permite realizar un seguimiento de la pérdida de paquetes de datos y del rendimiento de la red para identificar los problemas de conexión de forma proactiva. Nuestra herramienta de ping mide y registra el tiempo de ida y vuelta de los paquetes, lo que permite conocer los niveles de latencia entre los dispositivos. Además, mide si hay pérdidas en el trayecto mientras se realiza la prueba de ping.

Roaming

Otro problema común en el layer 2 es el roaming. A veces, los problemas de itinerancia se deben a problemas de los controladores en el lado del dispositivo cliente, y a dispositivos pegajosos debido a un mal diseño del WiFi. Normalmente, la itinerancia mejora para aquellos dispositivos cliente que soportan los protocolos 802.11K.
 
Además, la itinerancia tiene una correspondencia con la seguridad de la WLAN. Cuando los dispositivos cliente se desplazan de un AP a otro, siempre tienen que pasar por un proceso de autenticación con el nuevo AP. Cuando los AP actúan de forma independiente, el establecimiento de una autenticación tiene lugar cada vez que el dispositivo cliente se desplaza.
 
Por ejemplo, el smartphone de un usuario final está conectado al WiFi del aeropuerto, donde coexisten decenas de AP en la misma red. Si el usuario final se desplaza, sin la inclusión de los estándares 802.11r/k, el smartphone se desconecta del AP existente antes de establecer una conexión con el nuevo.
 
Como resultado, el usuario final experimenta desconexión WiFi y latencia mientras se reconecta a un nuevo punto de acceso. Esto se traduce en caídas en las llamadas basadas en WiFi, lentitud en la carga de sitios web, dificultades para subir imágenes a las redes sociales y otros resultados negativos.
 
La plataforma WiFi en la nube de Tanaza es compatible con los protocolos actuales de itinerancia rápida IEEE 802.11. Los estándares de itinerancia rápida se aprovechan cuando un dispositivo cliente se conecta a un SSID seguro o cautivo en una red inalámbrica. Estos estándares permiten al dispositivo cliente desplazarse rápidamente de un punto de acceso a otro sin problemas. Los dispositivos cliente no necesitan volver a autenticarse en el servidor RADIUS cada vez que cambian de punto de acceso.
 
Si se instala el sistema operativo TanazaOS en los puntos de acceso que no disponen de itinerancia en el firmware de serie, se pueden añadir a los dispositivos funciones de itinerancia según los estándares IEEE 802.11r/k/v. En consecuencia, el sistema operativo TanazaOS permite la función de itinerancia rápida sobre redes de múltiples proveedores de una variedad de puntos de acceso WiFi con los que es compatible.

Prueba Tanaza 

Experimenta la potencia de la gestión de los puntos de acceso WiFi desde la nube con Tanaza.

Get Started

✔︎ No se requiere tarjeta de crédito

Tanaza OS